Gerti Kappel


Image
O.Univ.Prof.in Dipl.-Ing.in
Mag.a Dr.in techn.

Gerti Kappel

  • About:

    Gerti Kappel is full professor at the Institute of Information Systems Engineering at TU Wien, chairing the Business Informatics Group. Prior to that, from 1993 to 2001, she was a full professor of computer science (database systems) and head of the Department of Information Systems at the Johannes Kepler University Linz.

    From 2016 to 2019, she was a member of the dean’s team of the Faculty of Informatics responsible for research, diversity, and financial affairs. Since the beginning of 2020 she acts as the dean of the Faculty of Informatics at TU Wien.

    Her current research interests include Model Engineering, Web Engineering, and Process Engineering, with a special emphasis on cyber-physical production systems. Striving for the unity of research and teaching, she co-authored and co-edited among others „UML@Work“ (dpunkt.verlag, 3rd ed, 2005), „UML@Classroom“ (Springer, 2015), and „Web Engineering“ (Wiley, 2006).

  • Orcid: 0000-0002-4758-9436
  • Keywords: Process Engineering, Data Engineering, Services Engineering, UML and XML, Business Process Management (BPM), Model Engineering, Workflow Management Systems (WFMS), Web Engineering, Object Orientation, Software Engineering
  • Roles: Head of Services, Full Professor

Publications

From Mining to Mapping and Roundtrip Transformations : a systematic approach to model-based tool integration
Manuel WimmerWerner RetschitzeggerGerti Kappel

View PDF View .bib

Handle: 20.500.12708/11032; Year: 2008; Issued On: 2008-01-01; Type: Thesis; Subtype: Doctoral Thesis;

Keywords:
Astract: Model-Driven Engineering (MDE) gains momentum in academia as well as in practice. A wide variety of modeling tools is already available supporting different development tasks and advocating different modeling languages. In order to fully exploit the potential of MDE, modeling tools must work in combination, i.e., a seamless exchange of models between different modeling tools is crucial for MDE. Current best practices to achieve interoperability use model transformation languages to realize necessary mappings between concepts of the metamodels defining the modeling languages supported by different tools. However, the development of such mappings is still done in an ad-hoc and implementation-oriented manner which simply does not scale for large integration scenarios. The reason for this is twofold:
first, various modeling languages are not based on metamodeling standards but instead define proprietary languages rather focused on notational aspects, and second, existing model transformation languages are too fine granular to express mappings on a highlevel of abstraction and lack appropriate reuse mechanisms for already existing integration knowledge. This thesis proposes a comprehensive approach for realizing model-based tool integration which is inspired from techniques originating from the field of database integration, but employed in the context of MDE. For tackling the problem of missing metamodel descriptions, a semi-automatic approach for mining metamodels and models from textual language definitions is presented, representing a prerequisite for the subsequent steps which are based on metamodels and models, only. For raising the level of abstraction and the possibility of reuse of mappings between metamodels, a framework is proposed for building, applying, and executing reusable mapping operators. To demonstrate the applicability of the framework, it is applied for defining a set of mapping operators which are intended to resolve typical structural heterogeneities occurring between the core concepts used to define metamodels. Finally, for ensuring roundtrip capabilities of transformations, two approaches are presented how existing, non-roundtripping transformations can be enriched with rountrip capabilities.

Wimmer, M. (2008). From Mining to Mapping and Roundtrip Transformations : a systematic approach to model-based tool integration [Dissertation, Technische Universität Wien]. reposiTUm. https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-27869
Model transformation by-example : an eclipse based framework
Abraham MüllerGerald MüllerManuel WimmerMichael StrommerGerti Kappel

View PDF View .bib

Handle: 20.500.12708/11136; Year: 2008; Issued On: 2008-01-01; Type: Thesis; Subtype: Diploma Thesis;

Keywords: By-Example, model transformation, metamodel, automatic transformation, GMF
Astract: Many of the existing approaches for model transformation are metamodel-based and thus require detailed knowledge of the corresponding concepts and syntax. A solution often consists of a complete set of rules, which map meta elements between domains. These rules have to be provided by a third-party or the user herself. The latter case requires high levels of familiarity with both metamodels.
Model Transformation By-Example (MTBE) introduces a new concept. It enables the user to make use of her existing knowledge of the syntax and notation at the M1 level by deriving the rules automatically from mappings on the instance of a metamodel. The result of these generated rules and therefore the level of completeness can be applied continuously during the process and may lead to an iterative way of de ning the necessary mappings. To be able to generate a complete rule set, the suggested framework is able to provide an extension mechanism to alter the behaviour of the whole analysing component.
This work proposes the implementation of an MTBE-based framework on top of the Graphical Modeling Framework (GMF). The framework is realized by utilising the plug-in capabilities of Eclipse. The graphical components used to create the diagrams and mappings are realized through a GMF editor. An extensible analyser is applied to translate those mappings to the next abstraction level and to provide a weaving model as well as a set of ATL (Atlas Transformation Language) rules for later use in transforming models in both directions.
The core of the analyser consists of three algorithms, which provide the basic logic and can be extended to handle additional domains. The Eclipse mechanism through extension points is used to provide this capability. For testing and demonstration purposes two GMF Editors were developed, one for UML class diagrams and one for the ER domain.

Müller, A., & Müller, G. (2008). Model transformation by-example : an eclipse based framework [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-23795
Model transformation by-example MTBE
Michael StrommerChristian HuemerGerti Kappel

View PDF View .bib

Handle: 20.500.12708/11830; Year: 2008; Issued On: 2008-01-01; Type: Thesis; Subtype: Doctoral Thesis;

Keywords: Model Driven Software Development, Model Transformation, GMF, By-Example
Astract: Model-Driven Engineering (MDE) is getting more and more attention as a viable alternative to the traditional code-centric software development paradigm.
With its progress, several model transformation approaches and languages have been developed in the past years. Most of these approaches are metamodel-based and therefore require knowledge of the abstract syntax of the modeling languages, which in contrast is not necessary for defining domain models using the concrete syntax of the respective languages.
To cope with shortcomings of current model transformation approaches we propose Model Transformation By-Example (MTBE), which is based on the by-example paradigm. Our approach allows the user to define semantic correspondences between concrete syntax elements with the help of special mapping operators. This is more user-friendly than directly specifying model transformation rules and mappings on the metamodel level. In general, the user's knowledge about the notation of the modeling language and the meaning of mapping operators is sufficient for the definition of model transformations. The definition of mapping operators is subject to extension, which has been applied for the definition of mapping operators for the structural and the behavioral modeling domain. But to keep things transparent and user-friendly, only a minimal set of mapping operators has been implemented. To compensate for the additional expressiveness inherent in common model transformation languages we apply reasoning algorithms on the models represented in concrete as well as in abstract syntax and on the metamodels to generate adequate transformation code.
In order to fulfill the requirements for a user-friendly application of MTBE, proper tool support and methods to guide the mapping and model transformation generation tasks are a must. Hence, a framework for MTBE was designed that builds on state-of-the-art MDE tools on the Eclipse platform, such as the Eclipse Modeling Framework (EMF), the Graphical Modeling Framework (GMF), the Atlas Transformation Language (ATL), and the Atlas Model Weaver (AMW). The decision to base our implementation on top of Eclipse and further Eclipse projects was driven by the fact, that there is a huge community we can address with our MTBE plug-in.
Finally, we evaluate our approach by means of two case studies in the areas of structural as well as behavioral modeling languages.

Strommer, M. (2008). Model transformation by-example MTBE [Dissertation, Technische Universität Wien]. reposiTUm. https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-24492
The model morphing approach : horizontal transformation of business process models
Marion MurzekDimitris KaragiannisGerti Kappel

View PDF View .bib

Handle: 20.500.12708/14015; Year: 2008; Issued On: 2008-01-01; Type: Thesis; Subtype: Doctoral Thesis;

Keywords: Model Transformation, Business Process Models
Astract: Owing to company mergers and business to business interoperability, there is a need for model transformation in the area of business process modeling to facilitate model integration and model synchronisation. This need arises, on one hand, from the fact that there are many different business process modeling formalisms, for example the ADONIS Standard Modeling Method , UML 2.1 Activity Diagram, Event-driven Process Chains Method, and, the Business Process Modeling Notation.
These formalisms provide different ways to express and represent the same aspects of business process modeling. On the other hand, existing model transformation approaches, like ATL, QVT, and Fujaba, use very general concepts for transforming models for different purposes.
However, recurring structures have been observed when transforming models in the area of business process modeling. This leads to the assumption, that there are similar transformation problems in a distinct area. These recurring structures, however, are only inadequately supported by existing transformation approaches.
This thesis analyzes the different ways of how business process modeling aspects are represented in various business process modeling formalisms.
Furthermore, existing transformation approaches are evaluated concerning their suitability for transforming models in the area of business process modeling. Based on this evaluation, special requirements and solutions for model transformations in the area of business process modeling are derived. These solutions lead to the construction of the Model Morphing approach, which consists of an integrated metamodel and morphing methods which operate based on this metamodel. The Model Morphing approach makes it possible to concentrate on the specific transformation problems within a distinct domain. Furthermore, it reuses existing model transformation approaches and reduces the need for excellent programming skills when defining model transformations.

Murzek, M. (2008). The model morphing approach : horizontal transformation of business process models [Dissertation, Technische Universität Wien]. reposiTUm. https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-16901
A survey on web modeling approaches for ubiquitous web applications
Wieland SchwingerWerner RetschitzeggerAndrea SchauerhuberGerti KappelManuel WimmerBirgit PröllCristina Castro CacheroSven CasteleynOlga De TroyerPiero FraternaliIrene GarrigosFranca GarzottoAthula GinigeGeert-Jan HoubenNora KochNathalie MorenoOscar PastorPaolo PaoliniVicente Ferragud PelechanoGustavo RossiDaniel SchwabeMassimo TisiAntonio VallecilloKees van der SluijsGefei Zhang

View .bib

Handle: 20.500.12708/170355; Year: 2008; Issued On: 2008-01-01; Type: Publication; Subtype: Article;

Keywords:
Astract: Ubiquitous web applications (UWA) are a new type of web applications which are accessed in various contexts, i.e. through different devices, by users with various interests, at anytime from anyplace around the globe. For such full-fledged, complex software systems, a methodologically sound engineering approach in terms of model-driven engineering (MDE) is crucial. Several modeling approaches have already been proposed that capture the ubiquitous nature of web applications, each of them having different origins, pursuing different goals and providing a pantheon of concepts. This paper aims to give an in-depth comparison of seven modeling approaches supporting the development of UWAs. This methodology is conducted by applying a detailed set of evaluation criteria and by demonstrating its applicability on basis of an exemplary tourism web application. In particular, five commonly found ubiquitous scenarios are investigated, thus providing initial insight into the modeling concepts of each approach as well as to facilitate their comparability. The results gained indicate that many modeling approaches lack a proper MDE foundation in terms of meta-models and tool support. The proposed modeling mechanisms for ubiquity are often limited, since they neither cover all relevant context factors in an explicit, self-contained, and extensible way, nor allow for a wide spectrum of extensible adaptation operations. The provided modeling concepts frequently do not allow dealing with all different parts of a web application in terms of its content, hypertext, and presentation levels as well as their structural and behavioral features. Finally, current modeling approaches do not reflect the crosscutting nature of ubiquity but rather intermingle context and adaptation issues with the core parts of a web application, thus hampering maintainability and extensibility. Different from other surveys in the area of modeling web applications, this paper specifically considers modeling concepts for their ubiquitous nature, together with an investigation of available support for MDD in a comprehensive way, using a well-defined as well as fine-grained catalogue of more than 30 evaluation criteria.

Schwinger, W., Retschitzegger, W., Schauerhuber, A., Kappel, G., Wimmer, M., Pröll, B., Castro Cachero, C., Casteleyn, S., De Troyer, O., Fraternali, P., Garrigos, I., Garzotto, F., Ginige, A., Houben, G.-J., Koch, N., Moreno, N., Pastor, O., Paolini, P., Ferragud Pelechano, V., … Zhang, G. (2008). A survey on web modeling approaches for ubiquitous web applications. International Journal of Web Information Systems, 4(3), 234–305. https://doi.org/10.1108/17440080810901089


Teaching

Project in Computer Science 1
Semester: 2025S; Nr: 194.145; Type: PR; Hours: 4.0; Language: if required in English; View on TISS

Seminar for Master Students in Business Informatics
Semester: 2024W; Nr: 180.779; Type: SE; Hours: 1.0; Language: English; View on TISS

Research Seminar
Semester: 2024W; Nr: 188.446; Type: SE; Hours: 2.0; Language: if required in English; View on TISS

Literature Seminar for PhD Students
Semester: 2024W; Nr: 188.512; Type: SE; Hours: 2.0; Language: German; View on TISS

Model Engineering
Semester: 2024W; Nr: 188.923; Type: VU; Hours: 4.0; Language: English; View on TISS

Bachelor Thesis for Informatics and Business Informatics
Semester: 2024W; Nr: 188.926; Type: PR; Hours: 5.0; Language: if required in English; View on TISS

Scientific Research and Writing
Semester: 2024W; Nr: 193.052; Type: SE; Hours: 2.0; Language: German; View on TISS

Project in Computer Science 1
Semester: 2024W; Nr: 194.145; Type: PR; Hours: 4.0; Language: if required in English; View on TISS

Sustainability in Computer Science
Semester: 2024W; Nr: 194.155; Type: VU; Hours: 2.0; Language: English; View on TISS


Projects

Digitale Kompetenzen @ Parlament
Name: DKP; Title: Digitale Kompetenzen @ Parlament; Begins On: 2021-04-01; Ends On: 2021-09-30; Context: Parlamentsdirektion; View Project Website

IFC-Roundtrip und Plangrafiken
Name: IFC-Roundtrip und Plangrafiken; Title: IFC-Roundtrip und Plangrafiken; Begins On: 2019-01-01; Ends On: 2020-06-30; Context: tbw solutions ZT GesmbH; View Project Website

Vienna Informatics Living Lab
Name: Vienna Informatics Living Lab; Title: Vienna Informatics Living Lab; Begins On: 2018-08-01; Ends On: 2019-07-31; Context: Vienna Business Agency (WAW); View Project Website

Multi-Paradigm Modelling for Cyber-Physical Systems (MPM4CPS)
Name: MPM4CPS; Title: Multi-Paradigm Modelling for Cyber-Physical Systems (MPM4CPS); Begins On: 2014-10-01; Ends On: 2019-05-31; Context: European Cooperation in Science and Technology (COST); View Project Website

COSIMO: Collaborative Configuration Systems Integration and Modeling
Name: COSIMO; Title: COSIMO: Collaborative Configuration Systems Integration and Modeling; Begins On: 2014-01-01; Ends On: 2017-05-30; Context: Vienna Business Agency (WAW); View Project Website

ARTIST: Advanced software-based seRvice provisioning and migraTIon of legacy Software
Name: ARTIST; Title: ARTIST: Advanced software-based seRvice provisioning and migraTIon of legacy Software; Begins On: 2012-10-01; Ends On: 2015-09-30; Context: European Commission; View Project Website

DARWIN - Model-driven Development and Evolution of Semantic Infrastructures
Name: DARWIN; Title: DARWIN - Model-driven Development and Evolution of Semantic Infrastructures; Begins On: 2012-03-01; Ends On: 2015-02-28; Context: Austrian Research Promotion Agency (FFG); View Project Website

TROPIC: A Framework for Model Transformations on Petri Nets in Color
Name: TROPIC; Title: TROPIC: A Framework for Model Transformations on Petri Nets in Color; Begins On: 2009-03-01; Ends On: 2012-08-31; Context: Austrian Science Fund (FWF); View Project Website

AMOR: Adaptable Model Versioning
Name: AMOR; Title: AMOR: Adaptable Model Versioning; Begins On: 2009-02-01; Ends On: 2011-09-30; Context: SparxSystems Software GmbH; View Project Website

Development of a WEB-based database for the global administration of CAN-Data
Name: Rosenbauer-DB; Title: Development of a WEB-based database for the global administration of CAN-Data; Begins On: 2008-09-01; Ends On: 2009-04-30; Context: Rosenbauer; View Project Website

Model-Driven Web Engineering net
Name: MDWEnet; Title: Model-Driven Web Engineering net; Begins On: 2006-12-01; Ends On: 2010-12-31; Context: Johannes Kepler Universität Linz; View Project Website

TRACK and TRADE: Creating a Data Mart for Floating Car Data
Name: TRACK™ Title: TRACK and TRADE: Creating a Data Mart for Floating Car Data; Begins On: 2006-10-01; Ends On: 2008-09-30; Context: European Commission; View Project Website

ModelCVS: A Semantic Infrastructure for Model-based Tool Integration
Name: ModelCVS; Title: ModelCVS: A Semantic Infrastructure for Model-based Tool Integration; Begins On: 2006-01-01; Ends On: 2007-12-31; Context: ARIKAN Productivity Group GesmbH; View Project Website

ZELESSA: An Enabler for Real-time Business Intelligence
Name: ZELESSA; Title: ZELESSA: An Enabler for Real-time Business Intelligence; Begins On: 2006-01-01; Ends On: 2007-06-30; Context: Österr. Nationalbibliothek; View Project Website

Admina.at goes Austria
Name: Admina.at; Title: Admina.at goes Austria; Begins On: 2005-12-01; Ends On: 2007-09-30; Context: Federal Ministry of Science and Research (bm:wf); View Project Website

Women's Postgraduate College for Internet Technologies
Name: WIT; Title: Women's Postgraduate College for Internet Technologies; Begins On: 2003-01-01; Ends On: 2007-12-31; Context: European Commission; View Project Website

Team

Business Informatics Group, TU Wien

Head


Team member

Henderik Proper

Univ.Prof. PhD

Professors


Team member

Christian Huemer

Ao.Univ.Prof. Mag.rer.soc.oec.
Dr.rer.soc.oec.

Team member

Dominik Bork

Associate Prof. Dipl.-Wirtsch.Inf.Univ.
Dr.rer.pol.

Team member

Gerti Kappel

O.Univ.Prof.in Dipl.-Ing.in
Mag.a Dr.in techn.

Team member

Henderik Proper

Univ.Prof. PhD

Visiting Scientists


Team member

Christiane Floyd

Hon.Prof.in Dr.in phil.

Team member

Johanna Barzen

Dr. phil.

Administration



Researchers


Team member

Aleksandar Gavric

Univ.Ass. MEng. B.Eng.

Team member

Galina Paskaleva

Projektass.in Dipl.-Ing.in
Dipl.-Ing.in BSc

Team member

Marianne Schnellmann

Univ.Ass.in BSc MSc

Team member

Marion Murzek

Senior Lecturer Mag.a rer.soc.oec.
Dr.in rer.soc.oec.

Team member

Marion Scholz

Senior Lecturer Dipl.-Ing.in
Mag.a rer.soc.oec.

Team member

Miki Zehetner

Univ.Ass. DI Bakk.rer.soc.oec. MSc

Team member

Syed Juned Ali

Univ.Ass. BSc MSc

External Researchers




Team member

Marco Huymajer

Univ.Ass. Dipl.-Ing.